

# Atacicept Reduces Serum Gd-IgA1 by Quartiles in IgAN Patients

Jonathan Barratt<sup>1</sup>, James A. Tumlin<sup>2</sup>, Celia J.F. Lin<sup>3</sup>, Yusuke Suzuki<sup>4</sup>, Marshall W. Fordyce<sup>3</sup>, Gerald B. Appel<sup>5</sup>

Institutions:

- 1. University of Leicester, Leicester, Leicestershire, United Kingdom.
- 2. Emory University, Atlanta, GA, United States.
- 3. Vera Therapeutics, Inc., South San Francisco, CA, United States.
- 4. Juntendo Daigaku, Bunkyo-ku, Tokyo, Japan.
- 5. Columbia University Irving Medical Center, New York, NY, United States.

## **Disclosures**

- Jonathan Barratt: Received consultancy payments and research funding from Vera Therapeutics
- James A. Tumlin: Received consultancy payments and research funding from Vera Therapeutics
- Celia J.F. Lin: Employee of Vera Therapeutics
- Yusuke Suzuki: Received consultancy payments and research funding from Vera Therapeutics
- Marshall W. Fordyce: Employee of Vera Therapeutics
- Gerald B. Appel: Dr. Appel has research grants with Sanofi- Genzyme, Alexion-Achilion, Reata, Calliditas, ChemoCentryx, Mallinkrodt, Genentech, and NIH. He has consultantships or Ad. Board participation with: Alexion-Achilion, Apellis, Aurinia, Genentech, Mallinkrodt, Novartis, Roche, Bristol-Myers Squibb, Up-to-Date, Genzyme-Sanofi, Omeros. He lectures for Aurinia and Glaxo. He has no major stock holdings.



# Atacicept is a Dual Inhibitor (BLyS and APRIL) of Plasma Cells and B Cells



#### **Key Considerations**

- Fully humanized fusion protein, subcutaneously administered weekly
- Dual blockade by TACI-Ig shown to be more potent than blocking BLyS alone or APRIL alone<sup>1</sup> and has benefit of targeting long-lived plasma cells<sup>2</sup>, in addition to B cells, thus reducing autoantibody production<sup>3</sup>

IHaselmayer P et al. Eur J Immunol 2017;00:1–11. 2Hiepe F et al. Nat Rev Rheumatol 2011;3:170-178. 3Gordon et al. 2017
Arthritis & Rheumatology 69(1): 122-130.
© 2021 VERA THERAPEUTICS, INC.



## Galactose-deficient IgA1 (Gd-IgA1) Plays a Central Role in IgAN Pathogenesis



Vera

## **Renal Survival Deteriorated by the Quartile of Serum Gd-IgA Level**



| Risks of composite end-point natur | al Loa-transformed  | Gd-IaA1 and ascen | dina avartiles |
|------------------------------------|---------------------|-------------------|----------------|
| hisks of composite end-point natur | ui Log-ti unsjormeu | Gu-igat unu uscen | unig quui thes |

|     |                   |                                 | Hazard Ration (95% Confidence Interval) & p value |                            |                            |                            |
|-----|-------------------|---------------------------------|---------------------------------------------------|----------------------------|----------------------------|----------------------------|
|     |                   | Gd-IgA1,median<br>(Range), U/ml | Unadjusted                                        | Model 1 a                  | Model 2 b                  | Model 3 <sup>c</sup>       |
| Com | posite endpoint   |                                 |                                                   |                            |                            |                            |
|     | Per 1SD lnGd-IgA1 | 312.5 (89.0–1442.0)             | 2.07 (1.53–2.78)<br>1.68×10 <sup>-6</sup>         | 1.51 (1.16–1.97)<br>0.002  | 1.50 (1.15–1.96)<br>0.003  | 1.44 (1.11–1.88)<br>0.006  |
|     | Gd-IgA1 quartiles |                                 |                                                   |                            |                            |                            |
|     | 1                 | 193.88 (89.0–237.0)             | 1 [Reference]                                     | 1 [Reference]              | 1 [Reference]              | 1 [Reference]              |
|     | 2                 | 272.51 (239.0–312.0)            | 2.63 (0.94–7.36)<br>0.066                         | 2.71 (0.99–7.39)<br>0.052  | 2.73 (0.99–7.45)<br>0.051  | 2.47 (0.91–6.72)<br>0.077  |
|     | 3                 | 345.67 (313.0–406.0)            | 4.03(1.36–11.96)<br>0.012                         | 3.74 (1.28–10.93)<br>0.016 | 3.72 (1.27–10.89)<br>0.016 | 3.86 (1.33–11.33)<br>0.013 |
|     | 4                 | 487.36 (408.0–1442.0)           | 6.76 (2.23–20.19)<br>0.001                        | 5.18 (1.75–15.34)<br>0.003 | 5.29 (1.78–15.73)<br>0.003 | 4.76 (1.61–14.09)<br>0.005 |

Composite endpoint was defined as 50% decline of eGFR(n=29), ESRD(n=3) or death(n=2). The 2 deaths also had 50% decline of eGFR.

Abbreviation: LnGd-IgA1, Natural Log-transformed galactose-deficient IgA1. Unadjusted Model analyzed Gd-IgA1 as continuous data.

<sup>a</sup>Model 1 adjusted for eGFR, proteinuria and hypertension (yes or no). Hypertension (yes or no) was analyzed as dichotomous data.

<sup>b</sup>Model 2 adjusted for covariates in model 1 plus histological grading (mild and severe lesion group). The latter variable was analyzed as categorical data.

<sup>C</sup>Model 3 adjusted for covariates in model 2 plus steroid use (yes or no). The latter variable was analyzed as dichotomous data.

Renal deterioration composite endpoint: 50% decline in eGFR, ESRD, or death



# The Ph2a JANUS trial was the first to show substantial Gd-IgA1 reduction with atacicept in IgAN patients



#### Ph2a JANUS Study Design

#### Dose-dependent reductions in Gd-IgA1 were observed for up to 72 wks with atacicept





### **Methods**

In the JANUS study, serum Gd-IgA1 was assessed at baseline (BL), wks 4, 12, 24, 48, and 72 At BL, pts were divided into 4 equal groups according to the quartiles of serum Gd-IgA1 distribution and quartile level was assessed at each timepoint A separate cohort of ~150 IgAN pts from the Univ of Leicester was used as a reference population for quartile determination



## Atacicept 75 mg decreased serum Gd-IgA1 levels by up to two quartiles

| Gd-IgA1 level (ng/ml) | Quartile |
|-----------------------|----------|
| < 3.13                | 1ST      |
| 3.13-5.01             | 2ND      |
| 5.01-7.75             | 3RD      |
| > 7.75                | 4TH      |

Quartiles determined by JANUS population

| SUBJECT | ALLOCATION     | Baseline | WEEK 4 | WEEK 12 | WEEK 24 | WEEK 48 | <b>WEEK 72</b> |
|---------|----------------|----------|--------|---------|---------|---------|----------------|
| 1       | Placebo        | 4TH      | 4TH    | 4TH     | 4TH     | 4TH     | 4TH            |
| 2       | Placebo        | 4TH      | 3RD    | 4TH     | 4TH     | 4TH     | 4TH            |
| 3       | Placebo        | 2ND      | 2ND    | 2ND     | 2ND     | 3RD     | 3RD            |
| 4       | Placebo        | 2ND      | 1ST    | 2ND     | 2ND     | 2ND     |                |
| 5       | Placebo        | 4TH      | 3RD    | 4TH     | 4TH     | 4TH     |                |
|         |                |          |        |         |         |         |                |
| 6       | Atacicept 25mg | 4TH      | 4TH    | 3RD     | 3RD     | 3RD     | 3RD            |
| 7       | Atacicept 25mg | 3RD      | 3RD    | 3RD     | 3RD     | 3RD     | 3RD            |
| 8       | Atacicept 25mg | 4TH      | 3RD    | 3RD     | 3RD     |         |                |
| 9       | Atacicept 25mg | 2ND      | 2ND    |         |         |         |                |
| 10      | Atacicept 25mg | 1ST      | 1ST    | 1ST     | 1ST     |         |                |
| 11      | Atacicept 25mg | 2ND      | 2ND    | 1ST     | 2ND     | 2ND     | 2ND            |
|         |                |          |        |         |         |         |                |
| 12      | Atacicept 75mg | 3RD      | 1ST    | 1ST     | 2ND     | 1ST     |                |
| 13      | Atacicept 75mg | 4TH      | 3RD    | 2ND     | 1ST     | 2ND     | 2ND            |
| 14      | Atacicept 75mg | 1ST      | 1ST    | 1ST     | 1ST     | 1ST     | 1ST            |
| 15      | Atacicept 75mg | 2ND      | 1ST    | 1ST     |         | 1ST     | 1ST            |
| 16      | Atacicept 75mg | 4TH      | 3RD    | 3RD     | 2ND     |         |                |

#### After 24 Weeks, all subjects receiving atacicept 75mg had reductions in serum Gd-IgA1 to the lowest risk quartiles



# Results generally consistent when using quartiles determined by the larger reference Univ of Leicester population

| Gd-IgA1 level (ng/ml) | Quartile |
|-----------------------|----------|
| < 5.26                | 1ST      |
| 5.26-8.13             | 2ND      |
| 8.14-11.67            | 3RD      |
| > 11.67               | 4TH      |

Quartiles determined by Univ or Leicester population

| SUBJECT | ALLOCATION     | Baseline | WEEK 4 | WEEK 12 | WEEK 24 | WEEK 48 | WEEK 72 |
|---------|----------------|----------|--------|---------|---------|---------|---------|
| 1       | Placebo        | 4TH      | 3RD    | 3RD     | 4TH     | 3RD     | 3RD     |
| 2       | Placebo        | 3RD      | 3RD    | 3RD     | 3RD     | 3RD     | 3RD     |
| 3       | Placebo        | 1ST      | 1ST    | 1ST     | 1ST     | 2ND     | 2ND     |
| 4       | Placebo        | 1ST      | 1ST    | 1ST     | 1ST     | 1ST     |         |
| 5       | Placebo        | 2ND      | 2ND    | 3RD     | 3RD     | 4TH     |         |
|         |                |          |        |         |         |         |         |
| 6       | Atacicept 25mg | 3RD      | 3RD    | 2ND     | 2ND     | 2ND     | 2ND     |
| 7       | Atacicept 25mg | 2ND      | 2ND    | 2ND     | 2ND     | 2ND     | 1ST     |
| 8       | Atacicept 25mg | 3RD      | 2ND    | 2ND     | 2ND     |         |         |
| 9       | Atacicept 25mg | 1ST      | 1ST    |         |         |         |         |
| 10      | Atacicept 25mg | 1ST      | 1ST    | 1ST     | 1ST     |         |         |
| 11      | Atacicept 25mg | 1ST      | 1ST    | 1ST     | 1ST     | 1ST     | 1ST     |
|         |                |          |        |         |         |         |         |
| 12      | Atacicept 75mg | 2ND      | 1ST    | 1ST     | 1ST     | 1ST     |         |
| 13      | Atacicept 75mg | 3RD      | 2ND    | 1ST     | 1ST     | 1ST     | 1ST     |
| 14      | Atacicept 75mg | 1ST      | 1ST    | 1ST     | 1ST     | 1ST     | 1ST     |
| 15      | Atacicept 75mg | 1ST      | 1ST    | 1ST     |         | 1ST     | 1ST     |
| 16      | Atacicept 75mg | 3RD      | 2ND    | 2ND     | 1ST     |         |         |

After 24 Weeks, all subjects receiving atacicept 75mg had reductions in serum Gd-IgA1 to the lowest risk quartile



### Conclusion

In this randomized, placebo controlled trial in IgAN patients, atacicept, administered subcutaneously once weekly, demonstrated a substantial reduction in serum Gd-IgA1 in a dose dependent manner that was durable through 72 weeks.

The largest effect was seen in the atacicept 75mg arm, where after 24 weeks all subjects had reductions in serum Gd-IgA1 to the lowest quartiles, which is associated with the most favorable renal survival.

These results represent the first randomized controlled trial evidence for normalization of Gd-IgA1 with an investigational therapeutic for IgAN patients.

The ongoing Ph2b ORIGIN trial evaluating up to atacicept 150 mg in IgAN patients will help determine how these robust reductions in Gd-IgA1 translate to measures of renal function, including proteinuria and GFR.





# Back-up

# Demographics and Baseline Characteristics of JANUS and Univ of Leicester Populations

|                                             | JANUS (n=16) | Univ of Leicester (n=150) |
|---------------------------------------------|--------------|---------------------------|
| Age, mean±SD                                | 43 ±11       | 39 ±7                     |
| Male                                        | 50.0%        | 65%                       |
| Caucasian                                   | 69%          | 94%                       |
| Asian                                       | 19%          | 4%                        |
| Other                                       | 13%          | 2%                        |
| eGFR (mL/min/1.73 m <sup>2</sup> ), mean±SD | 60 ±20.6     | 62 ±5.7                   |
| UPCR by 24 hr urine, mean±SD                | 1.7 ±0.8     | 1.4 ±0.6                  |
| History of systemic corticosteroids         | 25%          | 6%                        |
| Patients on ACEi and/or ARB                 | 100%         | 100%                      |

